

Адрес: 1107023, г. Москва, ул. Электрозаводская, д.52, стр.8 Тел.: 8-495-532-56-43; 8-925-514-00-65

Сайт: www.aka-scan.ru E-mail: info@aka-scan.ru

MT.SIO AKASCAN

ОБЪЕМНЫЙ ФЕРРИТОМЕТР

ПАСПОРТ

СОДЕРЖАНИЕ

1. Введение	2
2. Назначение	2
3. Технические характеристики	2
4. Комплектность	3
5. Устройство и принцип действия	3
5.1. Указание мер безопасности	4
6. Подготовка прибора к работе и работа с ним	4
7. Техническое обслуживание	5
8. Методика поверки	6
9. Возможные неисправности и методы их устране	
10. Правила хранения	8
11. Свидетельство о приемке	9
12. Транспортировка	9
13. Гарантийные обязательства	9

1. Введение

Настоящее руководство по эксплуатации содержит техническое описание, инструкцию по эксплуатации, методику поверки и предназначено для ознакомления оператора с принципом действия, устройством и конструкцией магнитного ферритометра МФ -510 объемного типа по **ГОСТ 26364-90** с целью правильной его эксплуатации.

2. Назначение

Ферритометр магнитный МФ-510 объемного типа по ГОСТ 2636490 предназначен для измерения содержания ферритной фазы (СФФ) в образцах хромоникелевых сталей аустенитного класса (образцы для измерения СФФ), изготавливаемых в соответствии с требованиями ГОСТ 8.518-84 и имеющих форму цилиндра длинной 60мм и диаметром 5мм или 7мм.

Применение ферритометра МФ-510 обеспечивает выполнение требований ПНАЭ Г-7-010-89 «Правила и нормы в атомной энергетике» при проведении контроля СФФ в соответствии с руководящим 2730.300.08-2003, РМД одобренным методическим документом Ростехнадзором РΦ методикой измерений выполнения МВИ.ЦМ.27.10.05.008-2003, утвержденной Ростехрегулированием РФ. Ферритометр может быть использован в лабораторных и цеховых предприятий атомной энергетики, **УСЛОВИЯХ** химического машиностроения и других отраслей промышленности.

3. Технические характеристики

Тип ферритометра по ГОСТ 26364- 90	объемный
Диапазон измерений СФФ, %	0,520
Предел допускаемой основной	5
приведенной погрешности, %	
Измерительный преобразователь	объемный
	магнитоиндукционный
Питание	Сеть переменного тока
	(220+10%)В, (50+0,5)Гц
Потребляемая мощность, Вт, не	120
более	
Масса, кг, не более	4,5
Габариты, мм	230x160x265
Температура окружающего воздуха, °C	0+40

Относительная влажность, %, не
более
Атмосферное давление, кПа

90 при 25 град. С

84 - 106

4. Комплектность

Комплект поставки ферритометра МФ510 должен соответствовать Таблице 1.

Таблица 1

Наименование	Кол-во	Примечание
Блок электронный	1 шт.	
Погружной пенал	2 шт.	для вставки образцов
		для измерения СФФ
		диаметром 5мм и 7мм
Калибровочные образцы		Содержание
СФФ		ферритной фазы
d=5 мм	1 шт.	d 5, %
d=7 мм	1 шт.	d 7, %
		Размеры и форма по
		ГОСТ 8.518-84
Руководство по	1 экз.	
эксплуатации		
с методикой поверки		
(паспорт)		
Сумка	1 шт.	

5. Устройство и принцип действия

В основу работы ферритометра положена известная зависимость магнитных свойств стали аустенитного класса от содержания в ней ферритной составляющей (ферритной фазы). Образец для измерения СФФ (далее по тексту контролируемый образец) помещается в объемный магнитоиндукционный преобразователь (МИП), представляющий собой намагничивающий воздушный соленоид с дифференциально включенными измерительной и компенсирующей обмотками. В измерительной обмотке возникает ЭДС, возрастающая с возрастанием СФФ в контролируемом образце. Конструкция соленоида обеспечивает требования ГОСТ 26364-90 по уровню напряженности и неоднородности магнитного поля в зоне расположения образца.

Зависимость между **СФФ** в контролируемом образце и **величиной ЭДС** устанавливается с помощью комплекта Государственных стандартных образцов **СФФ ГСО№2427**.

На передней панели электронного блока расположены: графический жидкокристаллический индикатор, отображающий результаты измерений и режим работы прибора; пленочная клавиатура со следующими кнопками:

КАЛИБР

- для калибровки прибора

- для изменения калибровочного параметра

∳ Тпуск

- для запуска режима намагничивания

Клавиша D5-D7 - для установки диаметра контролируемого

образца

Клавиша СЕТЬ ОБРАЗЕЦ - для включения (выключения) прибора

- гнездо для установки погружного пенала с

контролируемым образцом

На боковой стороне корпуса электронного блока размещен контейнер для хранения калибровочных образцов, используемых для проверки работоспособности и калибровки прибора в процессе его эксплуатации.

На задней панели электронного блока также размещен контейнер для хранения второго пенала.

- 5.1. Указание мер безопасности
- 5.1.1. По требованиям электробезопасности прибор соответствует требованиям ГОСТ 22261-94
- 5.1.2. По способу защиты от поражения электрическим током прибор соответствует требованиям ГОСТ 22261-94.
- 5.1.3. В целях безопасности оператора при работе с прибором необходимо заземлить прибор. Все монтажные работы производить при отключенном питании прибора.
- 6. Подготовка прибора к работе и работа с ним

ВНИМАНИЕ!

Электронный блок прибора разместить на расстоянии не менее 0,1 м от ферромагнитных предметов и конструкций.

Подготовка ферритометра к работе осуществляется в следующей последовательности:

6.1. Включите прибор нажатием клавиши «ВКЛ», при этом на индикаторе появится надпись **«Установите образец и нажмите «ПУСК»**.

Выдержите прибор во включенном состоянии 5 минут.

- 6.2. Проведите калибровку прибора
- 6.2.1. Установите клавишу **D5-D7** в положение, соответствующее диаметру контролируемого образца. Для калибровки использовать

калибровочный образец, диаметр которого соответствует диаметру **контролируемых** образцов.

- 6.2.2. Нажмите кнопку **КАЛИБР** и удерживайте ее до появления надписи «**Извлеките образец и нажмите кнопку ПУСК»**.
- 6.2.3. Убедитесь в отсутствии образца в рабочей зоне преобразователя и кратковременно нажмите кнопку ПУСК. Появится надпись «Установите калибровочный образец в прибор и нажмите ПУСК».
- 6.2.4. Установите калибровочный образец в прибор, используя соответствующий пенал, и нажмите кнопку ПУСК. Появится надпись

«Используя и т установите значение калибра Fe = NN.NN» Установите значение ферритной фазы калибровочного образца (указано в Разделе 4 Таблице 1) (в памяти прибора сохраняется значение СФФ последнего калибровочного образца, который использовался при калибровке прибора).

6.2.5. Нажмите кнопку ПУСК. Должна появится надпись «Калибровка завершена», затем появится надпись «Установите образец и нажмите ПУСК».

Калибровка завершена.

Извлеките калибровочный образец из пенала.

Прибор готов к работе.

6.3. Подготовьте контролируемые образцы — поверхность и геометрические размеры проб должны соответствовать ГОСТ 8.518-84, а их диаметр —диаметру калибровочного образца.

Загрузите контролируемый образец в соответствующий его диаметру пенал и вставьте пенал до упора в гнездо «ОБРАЗЕЦ» на передней панели прибора.

Нажмите кнопку **ПУСК** и считайте измеренное значение СФФ.

6.4. Для повышения достоверности измерений калибровку прибора следует производить перед каждой новой серией измерений.

7. Техническое обслуживание

Техническое обслуживание ферритометра состоит в ежедневном профилактическом осмотре и текущем ремонте

Профилактический осмотр производится согласно требованиям, указанным в Таблице 2.

Что проверяется	Технические требования
Электронный блок и	Отсутствие вмятин,
преобразователь	повреждений корпуса,
	загрязнений, следов коррозии,
	сколов и т. п.
Разъемные соединения,	Отсутствие повреждений
соединительные кабели	

8. Методика поверки

8.1. Настоящая методика распространяется на ферритометр МФ510 (далее по тексту — прибор) и устанавливает методы и средства первичной и периодической поверки в процессе эксплуатации и после ремонта согласно требованиям ГОСТ 8.518-84.

Межповерочный интервал - 1 (один) год

- 8.2. Операции и средства поверки
- 8.2.1. При проведении поверки должны выполнятся операции и применяться средства поверки, указанные в Таблице3.

Таблица 3

Наименование операции	Номера пунктов	Средства поверки и их нормативно-
onopad	методики	технические данные
	поверки	
Внешний осмотр	8.4.1.	конструкторская
		документация, ТУ
Опробование	8.4.2.	калибровочные образцы,
		входящие в комплект
		поставки прибора
Определение	8.4.3.	комплект государственных
диапазона измерений		стандартных образцов
и допускаемой		СФФ ГСО №2427
основной		
относительной		
погрешности		

- 8.2.2. Поверка проводится организациями, получившими в установленном порядке право на проведение данного вида работ.
 - 8.3. Условия поверки и подготовка к ней.
- 8.3.1. При проведении поверки должны соблюдаться следующие условия:

Температура окружающего

(20 + 5) °C

воздуха Относительная влажность Атмосферное давление

(30 – 80) % (86 – 106) кПа

8.4. Проведение поверки

8.4.1. Внешний осмотр

При внешнем осмотре должно быть установлено соответствие прибора следующим требованиям:

комплектность согласно Разделу 4 настоящего Руководства;

отсутствие механических повреждений;

наличие маркировки ферритометра и ее соответствие требованиям ТУ;

отсутствие внутри электронного блока посторонних предметов, обнаруживаемых при его наклонах.

- 8.4.2. Проверка работоспособности
- 8.4.2.1. Провести операцию по п. 6.1. настоящего Руководства.
- 8.4.2.2. Перевести клавишу установки диаметров в положение «d5».
- 8.4.2.3. Поместить в соответствующий погружной пенал калибровочный образец диаметром 5 мм, входящий в комплект поставки прибора. Ввести пенал с образцом до упора в гнездо «ОБРАЗЕЦ» электронного блока.
- 8.4.2.4. Кратковременно нажать кнопку «ПУСК», при этом на индикаторе должно появиться четырехзначное число, отображающее содержание ферритной фазы калибровочного образца в %.
- 8.4.2.5. Перевести клавишу установки диаметра в положение «d7» и вновь кратковременно нажать кнопку ПУСК. Показание прибора должно уменьшится примерно в два раза по сравнению с калибровочным образцом диаметром 5 мм.
 - 8.4.3. Определение допускаемой основной погрешности

Погрешность прибора определяется с использованием комплекта государственных стандартных образцов СФФ ГСО №2427.

Оценка погрешности прибора производится отдельно для образцов диаметром 5 мм и 7 мм в следующей последовательности проведения операций:

- 8.4.3.1. Подготовить прибор к измерениям, выполнив операции по п. п. 6.1. и 6.2. Раздела 6 настоящего Руководства.
- 8.4.3.2. Троекратно измерить содержание ферритной фазы каждого образца, входящих в комплект СО СФФ, используемый для поверки, согласно п. 6.3. настоящего Руководства.

Основную погрешность вычислить по формуле:

$$\delta = (\alpha_{cp}$$
 - α_{cB} / α_{cB} * 100%, где

Оср – среднее арифметическое значение из трех измерений СФФ, %

 C Св — содержание ферритной фазы стандартного образца по свидетельству, %

Допускаемая основная относительная погрешность прибора, определенная на каждом образце, не должна превышать 5%.

Результаты измерений занести в протокол поверки.

- 8.5. Оформление результатов
- 8.5.1. Положительные результаты первичной поверки ферритометров предприятие-изготовитель оформляет записью в паспорте.
- 8.5.2. Положительные результаты ведомственной поверки оформляются в порядке, установленном ведомственной метрологической службой.
- 8.5.3. Положительные результаты государственной поверки оформляются выдачей свидетельства установленной формы.
- 8.5.4. Приборы, не удовлетворяющие требованиям ГОСТ8.518-84, к выпуску и применению не допускаются. На них выдается извещение о непригодности.

9. Возможные неисправности и методы их устранения

Перечень возможных неисправностей, их признаки и способы устранения указаны в Таблице 4.

Таблица 4

Неисправность,	Вероятная	Метод
внешнее проявление	причина	устранения
При нажатии клавиши	Обрыв кабеля	Ремонт, замена
ВКЛ прибор не включается		
Прибор после	Зависание	Выключить и
включения не	микроконтроллера	включить прибор
реагирует на нажатие		повторно
кнопок		

10. Правила хранения

Приборы должны хранится в сухих отапливаемых помещениях при температуре окружающего воздуха в пределах +5...+40 °C, относительной влажности не более 80% при температуре +25°C.

В помещении для хранения не должно быть пыли, паров кислот и щелочей, агрессивных газов и других вредных веществ, вызывающих коррозию.

При эксплуатации ферритометра должны быть исключены механические повреждения электронного блока.

11. Свидетельство о приемке

Ферритометр	магнитный	і МФ	- 510,	, серийн	І ЫЙ	номе	p
SN	по тех	ническим	хара	актеристикам	г соотве	тствуе	Τŧ
требованиям,	указанным в	Разделе	3	настоящего	Руковод	дства	И
признан годны	м к эксплуатаці	ИИ.					

Представитель ОТК ______.
ООО «АКА-Скан»

12. Транспортировка

Ферритометр может транспортироваться любым видом транспорта в условиях, соответствующих ГОСТ 22261-94.

Предельные условия транспортирования:

температура окружающего воздуха в пределах -50...+50 °C; относительная влажность воздуха 95% при температуре +25°C; атмосферное давление 84...106 кПа;

число ударов в минуту 80...120, с максимальным ускорением 30 м/с; железнодорожные вагоны, кузова автомобилей, контейнеры других видов транспорта не должны иметь следов перевозки цемента, угля, химикатов и т. д.

13. Гарантийные обязательства

Изготовитель гарантирует соответствие технических характеристик ферритометра требованиям, указанным в Разделе 3 настоящего Руководства, при соблюдении потребителем условий эксплуатации, транспортирования и хранения, установленных настоящим Руководством.

Гарантийный срок эксплуатации – 12 месяца со дня ввода прибора в эксплуатацию. Гарантийный срок хранения – 6 месяцев со дня изготовления прибора.

Изготовитель в течение гарантийного срока выполняет безвозмездный ремонт при обнаружении потребителем неисправности ферритометра, а также предоставляет услуги по послегарантийному обслуживанию по адресу: 107023, г. Москва,

ул. Электрозаводская, д.52, стр.8 8-495-532-56-43; 8-925-514-00-65

www.aka-scan.ru